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The usual residual values are complemented by expectation values based

solely on the experimental data and the number of model parameters. These

theoretical R values serve as benchmark values when all of the basic

assumptions for a least-squares refinement, i.e. no systematic errors and a fully

adequate model capable of describing the data, are fulfilled. The prediction of R

values as presented here is applicable to any field where model parameters are

fitted to data with known precision. For crystallographic applications, F2-based

residual benchmark values are given. They depend on the first and second

moments of variance, intensity and significance distributions, h�2
i, hIo

2
i, hIo

2/�2
i.

Possible applications of the theoretical R values are, for example, as a data-

quality measure or the detection of systematic deviations between experimental

data and model predicted data, although the theoretical R values cannot identify

the origin of these systematic deviations. The change in R values due to

application of a weighting scheme is quantified with the theoretical R values.

1. Introduction

Take a list of experimentally observed data together with their

standard uncertainties (s.u.’s), and adjust model parameters

against the experimental data in a least-squares refinement.

The deviation between observed and calculated data (data

predicted from the model) is expressed by a residual factor,

the R value. What is an appropriate R value, given the data?

And is it possible to predict a benchmark value from the

experimental data alone or is a model required in any case?

A residual factor can only describe the fit between model

and data; it does not say anything about the degree of

agreement that is expected. Therefore it is a good descriptor

of the fit rather than a quality indicator. For a quality indicator

a reference value is necessary. If no explicit reference value is

given one might involuntarily refer to zero, which is not

appropriate: as experimental data are always affected by noise

an R value of zero would be very suspicious. But how much

deviation can be accepted? How much deviation is too much

or too little to be ‘appropriate’? For example what does an R

value of 0.05 tell us? This value might appear satisfying if it is

not known that with the given data an R value of, say, 0.02 is

attainable. In this case the actual or de facto R value is larger

than the expected one. This may indicate systematic sources

of error, a poor model, underfitting or incorrect s.u.’s. If, in

contrast, the attainable R value is determined to be 0.10, while

the de facto value is 0.05, this means that the refinement is

overfitting, or that again the s.u.’s are incorrect.

The experimental data are assumed to be of high accuracy

and their precision is assumed to be given by the s.u.’s.

Assuming that the model is fully adequate to describe the data

a Gaussian distribution in the residuals should result from the

least-squares fit (Prince, 2004). Residual distributions that are

very different from a Gaussian may indicate that the residuals

are not statistically independent, but correlated.

The prediction of R values as presented here is completely

general and applies to any situation where model parameters

are fitted to experimental data, as is the case in many scientific

fields. In the following, however, we refer without loss of

generality to crystallographic R values.

Many different conventions for crystallographic residual

values are applied. They may be based on the structure-factor

amplitudes, Fj j, or on the observed corrected intensities, F2,

with unit or statistical weights or with application of a

weighting scheme. For the present purpose it is important to

refer to the R value that corresponds to the residual sum

that is minimized in the least-squares procedure. The

observed intensities are the experimental data; therefore the

discussion is focused on the corresponding R values based on

F2. The R values of interest are discussed in detail in the next

section.

Comparative R values that might serve as a reference exist,

for example the R-free (Brünger, 1992), which needs

the specification and refinement of a model. Another

comparative R value is the theoretical R value obtained under

the special assumption of a Poisson distribution of the

detected particles (Henn & Meindl, 2010) of the photon or

neutron beam. Also empirically predicted R values for

macromolecular refinements exist (Urzhumtsev et al., 2009). In

this work we want to derive R values based on the experi-

mental data without the necessity to actually specify model

parameters and to conduct a least-squares refinement, and
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without any additional assumptions, apart from those neces-

sary for a least-squares refinement.

In the following sections, the individual R values are

presented with their definitions, along with a brief

discussion of the properties and their relations to other R

values. The predicted R value is introduced, which is an R

value calculated from the experimental data without explicitly

specifying a model. It gives a realistic estimate of the attain-

able R value based on the s.u.’s, provided all the above-

mentioned assumptions are met. A discussion of the predicted

R values follows, where these are applied to experimental

data.

2. R values

2.1. The R2 value

2.1.1. Definition.

R2 ¼

P
Io � Icð Þ

2P
I2

o

� �1=2

: ð1Þ

It is called R2ðobsÞ or R2ðallÞ depending on whether it refers to

the observed data with significance exceeding some threshold

value Io=�ðIoÞ> x or to all data. The threshold is a matter of

convention; a typical value is for example x ¼ 2 for standard

structure determination and x ¼ 3 for charge-density studies.

For least-squares refinements usually all data are used as

otherwise data would be suppressed systematically, thereby

leading to bias in the model parameters (Hirshfeld & Rabi-

novich, 1973).

The R2 value has the important property that it is by defi-

nition independent of the standard uncertainties, which do not

enter equation (1). In this sense R2 is a ‘hard’ measure of the

difference between observed and calculated intensities. In

contrast, measures including a weight yield different results

when the weights are changed. The R2 value can therefore be

seen as the expected value when all data are treated alike and

independent of their individual precision.

2.1.2. Prediction. The residuals ðIo � IcÞ=½�ðIoÞ� from a

least-squares fit with weights 1=�2 are normally distributed

when the following conditions are fulfilled: (a) the data are

accurate, (b) the (hypothetical) structure model is appropriate

such that the calculated intensity values Ic in equation (1) are

unbiased on the true intensities and (c) the s.u.’s from the

reflection file describe adequately the dispersion of the

observed intensity mean values about the true intensities.

From a normal distribution of residuals it follows that the

typical squared unweighted residual is of the order of

magnitude of the corresponding variance,

Io � Icð Þ
2
’ ��2ðIoÞ; ð2Þ

with � � 1 being a constant that takes into account the

number of independent model parameters Npar and the

number of reflections used in the least-squares refinement,

Nref ,

� ¼
Nref � Npar

Nref

: ð3Þ

Individual values of unweighted squared residuals in equation

(2) may be larger by a factor 3 to 5 (depending on the number

of reflections in the data set), or smaller than the corre-

sponding variance. However, these independent statistical

fluctuations tend to cancel each other more efficiently the

more reflections i ¼ 1; . . . ;N are involved. Therefore, if

equation (2) applies, the following equation will apply too:

PN
i¼1

Io;i � Ic;i

� �2
’ �

PN
i¼1

�2ðIo;iÞ: ð4Þ

From this follows an equation we will refer to repeatedly by

dividing both sides by N on

Io � Icð Þ
2

� �
’ � �2

� �
; ð5Þ

where �2ðIoÞ is abbreviated by �2. From equation (5) the

predicted value is obtained:

R
pred
2 ¼ �

�2
� �
I2

o

� �
 !1=2

: ð6Þ

Note the logic of the arguments: from a Gaussian distribution

of weighted residuals it follows that the squared unweighted

residuals group around the corresponding variances as

expressed in equation (5). The inverse is not true: from the

validity of equation (5), in any given particular case, one

cannot conclude that the underlying distribution is a normal

distribution.

When a weighting scheme is applied, the corresponding �̂�
values are taken (the ‘reduced � values’, for details see x2.3

and equations therein):

R
pred
2 ¼ �

�̂�2
� �
I2

o

� �
 !1=2

: ð7Þ

When there is a danger of confusion we will refer to R
pred
2

either as R
pred
2 ð�

2Þ, equation (6), or as R
pred
2 ð�̂�

2Þ, equation (7).

Although it has been stated that the R2 value is independent

of the s.u.’s, they now enter the R
pred
2 value via equation (5).

This equation reflects the assumptions of the existence of an

adequate model and the adequateness of the experimental

values for the s.u.’s. No model parameters have to be specified.

The predicted R2 value becomes smaller when the experi-

mental s.u.’s are smaller, for example by adding redundancy, or

when the significance Io=½�ðIoÞ
� �

increases in any other way.

Setting � ¼ 1 in equation (6) may serve as an upper bound for

the actual R2 and can be calculated directly from a data set

without any model. Alternatively, one may derive � from the

number of atoms, with four parameters per atom for coordi-

nates and isotropic atomic displacement parameters, or nine

parameters per atom for coordinates and anisotropic atomic

displacement parameters. Of course, parameter restraints, e.g.

from special positions, have to be taken into account too. In

this way it can be used as a quality descriptor of the data set

when the assumptions for least-squares fitting are met.
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2.2. The RF2 value

2.2.1. Definition.

RF2 ¼

P
Io � Ic

�� ��P
Io

�� �� : ð8Þ

This residual value is also independent of the s.u.’s, in the sense

that these do not enter the formula. Therefore it is a robust

absolute measure like the above-mentioned R2 value. It has

the same information content as R2, as it again measures

the difference between observed and calculated intensities

without weights but with a different metric. It is called for

example R2ðobsÞ or R2ðallÞ in the SHELX software package

(Sheldrick, 2008) and RðF2Þ or RallðF2Þ in the XD2006 soft-

ware package (Volkov et al., 2006).

2.2.2. Prediction. Using the standard assumption of

unbiasedness of calculated intensities on the true intensities

and an equation similar to equation (5), namely

Io � Ic

�� �� ’ 2

�

	 
1=2

��; ð9Þ

the RF2 value is predicted directly from the experimental data

by

R
pred

F2 ¼
2

�

	 
1=2
� �h i

jIoj
� � : ð10Þ

The factor ð2=�Þ1=2 is necessary to convert the expectation

value from the variance to the standard deviation. The

assumption entering here is the normal distribution of resi-

duals with mean value zero and standard uncertainty �. The

factor � takes again the degrees of freedom of the model into

account: a more flexible model should result in a closer

agreement between observed and calculated intensities.

2.3. The wR(F2) value

2.3.1. Definition.

wRðF2Þ ¼

P
w Io � Icð Þ

2P
wI2

o

� �1=2

: ð11Þ

This is the R value relevant for least-squares refinements on

experimental data, as the counter contains the residual sum

that is minimized. Different weights are in use. When

w ¼ 1=�2ðIoÞ is chosen, this is referred to as ‘statistical

weights’, whereas weights chosen according to a weighting

scheme have no special name. A popular weighting scheme

applied for example in SHELX (Sheldrick, 2008) is of the type

w ¼
1

�2 þ ðaPÞ2 þ bP
ð12Þ

with

P ¼
Io þ 2Ic

3
: ð13Þ

One may interpret the inverse weight as a new variance that is

larger or equal to the original one:

�̂�2
¼

1

w
� �2: ð14Þ

These values were already used in equation (7) to obtain a

prediction for R2 under the assumption that the �̂�2 values

instead of the �2 values adequately describe the measurement

errors. The wRðF2Þ value has the interesting property that it

is invariant under a multiplicative scaling transformation of

the weights. Setting for example w ¼ 1=�02 with �0 ¼ �� and

� 2 R, �> 0 and putting this into the definition leads to

wRðF2Þ
��

w¼1=�02
¼ wRðF2Þ

��
w¼1=�2 . A scaling transformation of

this type would of course affect other R values and the

goodness of fit (GoF), as well as the precision of the refined

model parameter and the number of reflections classified

as ‘observed’. The average significance of the reflections

Io=½�ðIoÞ�
� �

would be affected too; however, the resulting

model parameter values would be the same for a least-squares

refinement with w ¼ 1=�02 and for w ¼ 1=�2.

When the s.u.’s in the reflection file describe the variance of

the data adequately (and do not over- or underestimate it) and

if the structure model is adequate and no systematic errors are

in the data (like neglected absorption or extinction correc-

tion), a weighting scheme is not necessary. Note that in this

case also the GoF will be automatically correct without

enforcing it to assume a value close to 1, i.e. by deliberately

refining the values a and b in the weighting scheme, equation

(12), such that the GoF equals 1. As a weighting scheme allows

for larger differences [all contributions in equation (12) are

positive] between observed and calculated intensities, it will

also increase the R2 and RF2 values when the Fc put into these

definitions stem from a least-squares refinement with a

weighting scheme. For both parameters a; b approaching

zero, the inverse weights approach the variance again,

lima;b!0 �̂�
2 ¼ �2. Setting the weights to the inverse variances,

w ¼ 1=�2, is the standard setting for least-squares refinement

on accurate data. This means that data with higher significance

have a larger influence on the model parameters than data

with lower significance when the intensity is the same. The

application of a weighting scheme is the admission of differ-

ences between observed and calculated intensities that are

inconsistent with the s.u.’s, but no information is given about

the origin of these differences.

The wRðF2Þ value is equal to the R2 value when the weights

are set to w ¼ 1, or any other constant value, like w ¼ 1000:

R2 ¼ wRðF2Þ
��

w¼const
. Setting the weights to a constant value

means that all data are treated the same way, regardless of

how precisely they are measured, i.e. no data are preferred

over other data.

2.3.2. Prediction. To obtain a prediction we assume again

equation (5) in the case of statistical weights, or, for employing

a weighting scheme,

Io � Icð Þ
2

� �
’ � �̂�2

� �
: ð15Þ

For statistical weights this leads to the prediction

wRðF2Þ
��pred

w¼1=�2 ¼
�1=2

I2
o=�

2
� �� �1=2

; ð16Þ
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and for application of a weighting scheme with a reduced �
value �̂� correspondingly to the prediction

wRðF2
Þ
��pred

w¼1=�̂�2 ¼
�1=2

I2
o=�̂�

2
� �� �1=2

: ð17Þ

The denominator in equation (16) contains the mean squared

significance and the denominator in equation (17) the reduced

mean squared significance.

3. Discussion of the predicted R values

Although it is expected that strong reflections lead to small R

values, none of the predicted R values depends on the

observed intensity alone. The observed intensity is always

related somehow to the s.u.’s or variances. This reflects the fact

that intensities are on an arbitrary scale. When

the intensities are rescaled by multiplication

with a scale factor, the standard uncertainties

have to be multiplied with the same scale factor

in order to keep the significance constant

(Henn & Meindl, 2010).

To find confidence in the predicted R values,

the prediction is compared to the actual

outcome based on published experimental data

after a brief discussion of the non-standard

statistical descriptors of the data sets. Data

published online between 9 and 18 April

2013 were taken from Acta Crystallographica

Section C, 69, May 2013. All data sets with

refinements against F2 were analysed; the data

set with F values (Mesto et al., 2013) is omitted

from the analysis. Several data descriptors

important for the theoretical R values and

references for the data sets are given in Table 1.

Table 2 shows these data descriptors after

application of the weighting scheme and the

corresponding parameters. The list of predicted

and published R values is given in the supple-

mentary material.1

The predicted R values can be derived from

the statistical descriptors of the data sets given

in Tables 1 and 2. The average significance of

the data sets comprises the range from 6.88

(data set No. 12) to 64 (data set No. 25), i.e.

approximately one order of magnitude,

whereas the mean intensities and the mean

variances each comprise several orders of

magnitude (columns 2 and 3 of Table 1). Table

2 shows the parameters a and b from the

weighting scheme. The effect of these para-

meters is given in Table 2 in the form of the

ratio �2=�̂�2
� �

in column 6. For data set No. 25

(a ¼ 0:0460, b ¼ 0:1500) the weighting scheme

produces �2=�̂�2
� �

¼ 0:08, which is by far the

lowest value. The experimental � values are

clearly underestimated as can be seen from the

corresponding normal probability plot in the supplementary

material. This underestimation of experimental s.u.’s leads to

the low predicted R value. The weighting scheme effectively

reduces the mean significance of this data set from 64.24,

which is the largest mean significance, to 12.80. For data set

No. 14, with the largest value for a ¼ 11:2420, the reduction in

significance is comparably moderate from 17.86 to 12.17. Why

are the data sets so differently affected? For the parameters a

and b from the weighting scheme to create an impact, for

example, on the significance, more than the mere numerical
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Table 1
Statistical descriptors of the data sets.

The angle brackets hi indicate averaging over all data used for the refinements in the data sets.
From left to right: number of data set, mean intensity, mean s.u., mean squared intensity, mean
variance, mean significance and mean squared significance.

Data
set Io

� �
�ðIoÞ
� �

I2ðIoÞ
� �

�2ðIoÞ
� �

Io=½�ðIoÞ�
� �

I2
o=½�

2ðIoÞ�
� �

1 3.00 � 104 809.90 5.33 � 109 1.44 � 106 23.47 1338.36
2 3.22 � 104 663.63 5.44 � 109 1.08 � 106 30.26 1877.82
3 3.30 � 104 440.47 6.54 � 109 6.75 � 105 44.21 4161.13
4 3.03 � 104 608.16 3.25 � 109 4.94 � 105 48.39 4342.47
5 1.93 � 103 74.90 4.92 � 107 9.32 � 103 15.50 877.81
6 5.62 � 103 318.70 1.02 � 108 2.29 � 105 13.70 254.26
7 3.27 � 103 74.98 8.67 � 107 2.00 � 104 29.00 1999.62
8 1.90 � 103 48.02 2.75 � 107 1.54 � 104 27.54 1410.21
9 1.13 � 103 81.88 8.05 � 106 2.18 � 104 8.77 128.80
10 1.95 � 103 71.53 2.25 � 107 1.36 � 104 16.31 486.64
11 6.01 � 102 20.92 1.65 � 106 7.90 � 102 23.63 1225.00
12 4.43 � 102 41.32 3.65 � 106 1.45 � 104 6.88 93.44
13 1.77 � 103 65.44 2.43 � 107 1.86 � 104 16.35 527.63
14 1.13 � 104 425.08 6.92 � 108 4.83 � 105 17.86 528.74
15 5.19 � 102 9.27 2.10 � 106 4.60 � 102 37.29 2092.63
16 1.08 � 103 26.62 8.35 � 106 1.52 � 103 27.39 1541.70
17 3.82 � 102 8.98 3.25 � 106 1.03 � 103 21.72 836.19
18 6.14 � 101 2.84 3.41 � 104 9.53 16.31 1070.49
19 7.69 � 101 1.81 1.22 � 105 8.64 21.66 1757.36
20 6.14 � 102 30.87 1.00 � 107 5.70 � 104 11.73 286.27
21 1.28 � 102 4.03 6.81 � 105 8.27 � 102 16.31 721.03
22 4.91 � 103 364.17 1.47 � 108 1.79 � 105 16.12 1127.78
23 3.89 � 102 35.59 4.31 � 106 1.83 � 103 7.76 256.54
24 1.89 � 102 9.85 5.49 � 105 4.00 � 102 10.22 231.22
25 2.48 � 102 2.14 1.49 � 106 4.95 � 101 64.24 6167.76
26 4.15 � 102 10.29 1.12 � 106 2.96 � 102 29.10 2411.91
27 1.34 � 103 50.23 1.32 � 107 3.75 � 103 22.11 1337.07
28 8.73 � 102 28.15 1.14 � 107 1.50 � 103 23.75 2210.08
29 4.84 � 102 13.80 2.31 � 106 3.38 � 102 25.97 2457.13
30 3.08 � 102 10.82 1.65 � 106 6.25 � 102 18.94 912.62
31 8.49 � 102 28.02 1.14 � 107 2.19 � 103 19.88 1135.52
32 8.24 � 101 1.48 1.33 � 105 2.38 � 101 33.59 2580.03
33 9.95 � 101 3.47 1.69 � 105 6.91 � 101 18.10 1363.91
34 2.04 � 102 8.20 8.91 � 105 6.66 � 102 13.11 482.94
35 2.48 � 102 16.41 8.64 � 105 1.79 � 103 10.70 267.86
36 8.17 � 102 36.43 4.03 � 107 2.84 � 104 13.84 520.60
37 2.01 � 102 9.37 2.96 � 105 1.22 � 102 16.14 656.99

References: (1–3) He et al. (2013), (4) Jennene Boukharrata et al. (2013), (5) Zhou et al. (2013), (6) Deng et al.
(2013), (7–8) Wang et al. (2013), (9–10) Zhang et al. (2013), (11) Huang (2013), (12) Zhou & Wang (2013), (13)
Wu & Jin (2013), (14) Luo (2013), (15–17) Krause et al. (2013), (18–19) Arkhipov et al. (2013), (20–21) Su et al.
(2013), (22) Arderne (2013), (23–25) Bats et al. (2013), (26–27) Smith & Wermuth (2013a), (28–29) Smith &
Wermuth (2013b), (30–31) Castillo et al. (2013), (32–36) Gomes et al. (2013), (37) Görbitz & Yadav (2013).

1 A list of predicted and published R values, and normal probability plots for
all data sets as obtained from the DRK-plot software implemented in WinGX
(Farrugia, 2012) are available from the IUCr electronic archives (Reference:
KX5020). Services for accessing these data are described at the back of the
journal. For more information on normal probability plots, see Abrahams &
Keve (1971).



values of a and b play a role. For example, a and b will affect

the data sets differently when the intensities and/or the s.u.’s

are on a different scale. The parameter a will affect the strong

reflections most. Therefore the distribution of intensities

plays a role too. The most significant reflection in data set No.

25 has a significance of Io=½�ðIoÞ� ¼ 339:0 before and

Io=½�̂�ðIoÞ� ¼ 24:5 after application of the weighting scheme

(data not shown), whereas for data set No. 14 the change in the

maximum significance is from 58.8 to 35.1, i.e. the maximum

significance in data set 14 is much smaller than that of data set

No. 25. Application of a 6¼ 0 leads to a larger R value and to a

smaller GoF. There are obviously many interesting links

between the data descriptors; however, we prefer to stop

exploring these links in order to proceed with the theoretical

R values.

To explore the relation between the theoretical R values in

more detail, the questions to be answered are: is there a

hierarchy of the predicted R values in the sense that one is

always larger than the other? How does the weighting scheme

affect the predicted R values? What is the

meaning of the predicted R values?

For a first test, the wRðF2Þ
��pred

w¼1=�̂�2 value

[equation (17)] was calculated from the set of

experimental Io and �̂�ðIoÞ for all data sets. It is

expected that the de facto wRðF2Þ
��

w
value as

calculated from the data set including calcu-

lated intensities [equation (11)] is close to the

predicted one. The curves are shown in Fig. 1.

Recalculation of the published wRðF2Þ values

ensures that the same definitions are used, and

that parameter values for the weighting scheme

and for the number of refined parameters of

the structure model are correct.

The published R values were recalculated

from the published diffraction data. The

agreement is almost perfect, with one minor

exception for data set No. 12: the wRðF2Þ

values are 0.114 (published) and 0.119 (recal-

culated). The reasons for these differences

could not be tracked down.

Fig. 1 shows that the predicted values are

close to the de facto values, with a tendency for

the predicted values to stay below the actual

ones. Only data sets Nos. 18, 22, 23, 27 and 28

differ in this respect, where the predicted

values are larger than the de facto ones. These

are the data sets with S< 1 (see Table 3). A

large difference between de facto and predicted

values is observed only for data set No. 34. For

this data set the value for the GoF is with 1.24

the largest in the whole table. Multiplying

wRðF2Þ
��pred

w¼1=�̂�2 with the respective values for the

GoF results in virtually indistinguishable de

facto and predicted values.

It can be thus concluded that the prediction,

which assumes GoF = 1, works well. This

confirms the assumptions made for deriving the

predictions, in particular equations (5) and (15).

3.1. wRðF2Þ
��pred

w¼1=�̂2�2 and wRðF2Þ
��pred

w¼1=�2

The denominator in equation (17) can be interpreted as a

mean squared weighted significance. The weighted signifi-

cance will always be smaller than or equal to the usual

significance as �̂�2 � �2. Therefore the inequality holds:

wRðF2Þ
��pred

w¼1=�2 � RðF2Þ
��pred

w¼1=�̂�2 ; ð18Þ

where the equal sign applies when the parameters a and b for

the weighting scheme approach zero, i.e. for statistical weights.

Fig. 2 shows that the reduced significance w ¼ 1=�̂�2

increases the wRðF2Þ value. The space between the red and the

green curve can be interpreted as an estimate for the costs of

application of the weighting scheme, as predicted and de facto

wRðF2Þ
��

w¼1=�̂�2 values agree fairly well (Fig. 1). In other words:

if application of a weighting scheme was not necessary, wRðF2Þ

values close to the green line were possible with the given
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Table 2
Statistical descriptors of the data sets after application of the weighting scheme.

The angle brackets hi indicate averaging over all data used for the refinements in the data sets.
From left to right: number of data set, mean reduced s.u., mean reduced variance, mean reduced
significance, mean reduced squared significance, mean reduction factor of variance, and
parameters a and b from the weighting scheme as given in equations (12) and (13).

Data
set �̂�ðIoÞ

� �
�̂�2ðIoÞ
� �

Io=½�̂�ðIoÞ�
� �

I2
o=½�̂�

2ðIoÞ�
� �

�2ðIoÞ=�̂�
2ðIoÞ

� �
a b

1 1045.47 3.21 � 106 16.90 516.76 0.83 0.0180 0.0000
2 910.02 2.69 � 106 21.57 724.39 0.79 0.0170 0.0000
3 594.06 1.34 � 106 31.49 1628.79 0.75 0.0097 1.3211
4 716.40 7.55 � 105 36.62 2047.28 0.78 0.0082 1.3622
5 125.47 8.69 � 104 8.09 117.64 0.69 0.0374 1.7477
6 433.61 4.61 � 105 9.88 118.81 0.62 0.0421 4.9899
7 263.00 3.60 � 105 7.28 76.05 0.34 0.0626 8.0375
8 139.87 9.36 � 104 8.16 93.04 0.28 0.0521 5.2961
9 143.16 9.17 � 104 5.09 35.70 0.59 0.0941 1.6163
10 110.18 4.77 � 104 10.95 171.22 0.71 0.0387 0.2140
11 26.64 1.57 � 103 16.52 441.35 0.79 0.0217 0.0000
12 43.32 1.47 � 104 6.15 75.87 0.89 0.0000 0.6236
13 72.52 2.33 � 104 14.06 345.45 0.87 0.0132 0.2094
14 577.51 9.12 � 105 12.17 225.48 0.62 0.0209 11.2420
15 31.38 5.29 � 103 10.63 147.00 0.17 0.0451 0.9370
16 77.84 2.71 � 104 8.71 106.13 0.38 0.0548 1.8743
17 36.60 2.25 � 104 5.73 45.65 0.25 0.0836 0.9747
18 4.01 4.61 � 101 9.16 165.10 0.83 0.0324 0.0000
19 5.40 3.13 � 102 6.86 75.75 0.41 0.0487 0.2145
20 50.97 8.94 � 104 6.21 66.51 0.57 0.0550 0.7500
21 8.63 1.86 � 103 5.75 66.54 0.38 0.0380 0.5000
22 399.58 2.30 � 105 11.11 306.49 0.89 0.0187 0.0000
23 40.80 5.51 � 103 5.73 91.31 0.92 0.0300 0.0000
24 14.05 1.50 � 103 7.30 95.16 0.81 0.0450 0.0000
25 12.78 3.27 � 103 12.80 193.03 0.08 0.0460 0.1500
26 24.74 3.06 � 103 11.18 173.59 0.59 0.0488 0.0000
27 78.79 2.22 � 104 11.97 208.69 0.71 0.0372 0.0000
28 65.55 3.91 � 104 8.07 103.90 0.66 0.0571 0.0000
29 33.66 7.37 � 103 8.97 119.82 0.61 0.0541 0.1041
30 24.54 6.09 � 103 6.88 78.69 0.50 0.0544 0.6625
31 61.51 2.25 � 104 6.71 84.66 0.48 0.0376 3.2029
32 6.11 5.90 � 102 8.14 91.77 0.36 0.0656 0.0688
33 10.53 1.51 � 103 5.66 44.00 0.53 0.0898 0.0839
34 30.95 1.65 � 104 3.92 23.02 0.57 0.1408 0.0000
35 33.35 8.68 � 103 4.24 28.55 0.48 0.0855 1.4865
36 86.10 2.66 � 105 5.21 38.07 0.35 0.0773 2.8776
37 18.26 1.38 � 103 7.38 78.80 0.62 0.0625 0.1448



experimental data sets. But there are discrepancies between

model predicted and experimental data that are inconsistent

with the experimental s.u.’s. This makes the application of a

weighting scheme necessary (or alternatively a change of the

structure model and/or data processing), and therefore the

resulting wRðF2Þ values are larger.

3.2. R
pred
2 and wRðF2Þ

��pred

w¼1=�2

In the preceding paragraph it was shown that wRðF2Þ
��pred

w¼1=�̂�2

� wRðF2Þ
��pred

w¼1=�2 . Is there a similar relationship between

R
pred
2 and wRðF2Þ

��pred

w¼1=�2 ?

From the definitions of the predicted values it follows that

R2 is not always smaller than wRðF2Þ
��pred

w¼1=�2 . It is smaller when

the following inequality holds:

I2
o

�2

� �
<

I2
o

� �
�2h i

: ð19Þ

What does this inequality mean and when is it fulfilled?

For the case of only weak correlation between the inten-

sities and their respective variances it is expected that

I2
o

�2

� �
>

I2
o

� �
�2h i

; ð20Þ

because then the summands in which an accidentally low

variance �2 coincides with an accidentally large value of I2
o will

increase the term on the left-hand side of equation (20).

Other factors may be important too. For example, when the

correlation between observed intensities and variances is

strong and the variance is in proportion to the observed

intensity [which is a minimum variance (Henn & Meindl,

2010), both the variance from the beam-inherent Poisson

statistics as well as fluctuations in the beam stability should be

in proportion to sufficiently large Io], the inequality for the

squared significance, equation (19), turns into an inequality for

the observed intensity:

Io

� �2
� I2

o

� �
: ð21Þ

The validity of this inequality depends on the distribution of

intensities. In the unrealistic cases where the intensity is

about the same for all reflections the equal sign should hold.

For other cases it is expected that Io

� �2
< I2

o

� �
, which violates
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Figure 1
Predicted and de facto wRðF2Þ values and wRðF2Þ values from the
literature. The de facto wRðF2Þ

��
w¼1=�̂�2 value was calculated according to

equation (11) with �̂�2 from equation (14) from the published diffraction
data (green line). It should exactly match the values taken from the
literature (blue, dashed). Predictions (red) are according to equation
(17). Numerical values are given in the supplementary material.
References for the data sets are given in Table 1. The individual values
are connected with a line as a guide for the eye.

Figure 2
Predicted wRðF2Þ values. For all data sets it is predicted that
wRðF2Þ

��pred

w¼1=�̂�2 (red) � wRðF2Þ
��pred

w¼1=�2 (green) according to equation
(18). The space between red and green curves represents the costs of
the weighting procedure.

Table 3
Comparison between reduced variances and unweighted squared
residuals: ratios of mean values, coefficient � [equation (25)] from a
fit of unweighted squared residuals against ��̂�2, correlation coefficient cc
between Io � Icð Þ

2 and ��̂�2, and published values of GoF.

Data set Io � Icð Þ
2

� �
= ��̂�2
� �

� cc GoF

1 2.33 4.52 0.95 1.00
2 2.69 4.29 0.74 1.07
3 1.43 1.95 0.85 1.09
4 2.42 9.81 0.92 1.12
5 4.85 11.4 0.94 1.04
6 7.30 26.4 0.82 1.11
7 1.88 2.74 0.79 1.05
8 2.51 3.91 0.96 1.05
9 1.15 1.41 0.59 1.10
10 1.15 2.36 0.50 1.04
11 1.57 2.46 0.62 1.02
12 0.53 0.38 0.93 1.08
13 1.05 0.90 0.64 1.06
14 0.99 0.49 0.47 1.08
15 1.36 1.31 0.98 1.06
16 1.62 1.99 0.84 1.05
17 1.01 0.57 0.50 1.06
18 2.22 4.42 0.69 0.93
19 0.33 0.06 0.27 1.05
20 0.83 0.89 0.96 1.01
21 0.85 0.76 0.59 1.01
22 0.73 0.33 0.21 0.88
23 4.30 8.68 0.85 0.92
24 0.42 0.32 0.74 1.04
25 11.5 18.1 0.95 1.05
26 1.23 1.14 0.58 1.10
27 1.23 1.16 0.87 0.96
28 0.53 0.36 0.89 0.95
29 0.97 2.10 0.89 1.04
30 2.69 3.89 0.96 1.06
31 5.46 9.83 0.94 1.08
32 0.32 0.26 0.91 1.17
33 0.52 0.45 0.91 1.10
34 0.88 1.85 0.86 1.23
35 1.87 1.16 0.32 1.10
36 0.29 0.03 0.20 1.08
37 1.53 1.82 0.60 1.05



the inequality [equation (21)]. We are not going further into

this discussion here.

A plot of the ratio I2
o

� �
= �2
� �

and I2
o=�

2
� �

is shown in Fig. 3. For

the data sets above the constant line (Nos. 20 and 22) it is

predicted that R
pred
2 � wRðF2Þ

��pred

w¼1=�2 according to equation

(19).

A plot of R
pred
2 and wRðF2Þ

��pred

w¼1=�2 is shown in Fig. 4. The

R
pred
2 value tends to be lower than the corresponding weighted

R value with statistical weights. Only in the cases of data sets

Nos. 20 and 22 is the R
pred
2 value larger than the wRðF2Þ

��pred

w¼1=�2

value. This was predicted by equation (19) and is visualized in

Fig. 3.

It is beyond the scope of the present work to track down the

exact differences between the data sets.

4. Discussion of the de facto and the predicted R values

For a comparison between de facto R values and predicted

ones one has to consider a few points: the de facto R values are

obtained by fitting model parameters to the experimental

data with a given metric, i.e. with weighted or not weighted

differences or squared differences of jFj or F2 values. A least-

squares refinement minimizes the residual sum and relies on

the assumption that the resulting residuals follow the normal

distribution (Prince, 2004). A Gaussian distribution results if

the contributing errors are random. If there are systematic

errors, however, a non-Gaussian distribution of residuals may

result.

For the interpretation of predicted and de facto R values it is

helpful to keep in mind that the prediction also relies on the

assumption of a Gaussian distribution of residuals. Deviations

between predicted and actual R values (of the same metric

that was used for least-squares residual minimization) there-

fore indicate that not all assumptions hold. But the inverse is

not true: if the predicted and actual R values of the metric that

was used for least-squares residual minimization coincide, this

does not prove that all assumptions are met (that ‘everything

is okay’). For example, the distribution of residuals may follow

a different distribution than a Gaussian distribution and yield

by chance the same R value as the predicted one.

4.1. De facto and predicted wRðF2Þ
��

w¼1=�̂�2

As already shown and discussed in Fig. 1, there is a fair

agreement between observed and predicted values.

4.2. De facto and predicted wRðF2Þ
��

1=�2

The de facto wRðF2Þ
��

1=�2 value is always larger than the

predicted one. This is expected, as the de facto R value is

calculated from the set of Io, Ic, �ðIoÞ with experimental data

Io, �ðIoÞ and calculated intensities Ic obtained from a model

refinement with non-statistical weights w ¼ 1=�̂�2.

The red line in Fig. 5 is a benchmark value for the

wRðF2Þ
��

w¼1=�2 of the respective data set: if weighting was not

necessary and all assumptions were met (basically, no

systematic errors) a de facto wRðF2Þ value close to the red line

was expected. For some data sets the absolute differences

between de facto and predicted R values are rather small, e.g.

sets 1, 2, 3, 4, 22, 23. It is tempting to relate this to the para-

meters of the weighting scheme. This can be achieved by

quantification of how much the weighting affects the s.u.’s, for

example by calculating �2=�̂�2
� �

, with �̂� from equation (14).

This ratio can be interpreted as the factor by which the

effective variance is on average reduced through the weighting

scheme. A graph of this value is shown in Fig. 6 together with a

line at the value 0.75. This line was chosen to discriminate

between weighting schemes that affect the variances only
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Figure 3
Ratio of I2

o

� �
= �2
� �

and I2
o=�

2
� �

. Additionally the horizontal line is plotted,
where the ratio equals 1. For more information see the text.

Figure 4
The predicted R values R

pred
2 (red) and wRðF2Þ

��pred

w¼1=�2 (green). For more
information see the text.

Figure 5
Presentation of the predicted wRðF2Þ

��
w¼1=�2 (red) and the corresponding

de facto value as calculated from the diffraction data (green).



slightly (these are above the line) and those that reduce the

effective variance to a large extent (under the line).

Comparison of Fig. 6 with Fig. 5 shows that the data sets

with a large ratio (above the line) also exhibit a low absolute

difference in the actual and predicted R values.

4.3. De facto and predicted R2 values

De facto and predicted R2 values are shown in Fig. 7.

For the de facto R2 value, which is calculated according to

equation (1) from the published data, only Io and Ic enter the

calculation. The Ic were determined by a least-squares

refinement employing a weighting scheme, thereby allowing

for larger deviations between Io and Ic in comparison to e.g.

statistical weights. Therefore, the expected R2 value is calcu-

lated according to equation (7) from �, the set of Io and �̂�
values.

From the definitions of R
de facto
2 and R

pred
2 their ratio follows

as

R
de facto
2

R
pred
2

¼
Io � Icð Þ

2
� �
� �̂�2h i

" #1=2

: ð22Þ

When equation (5) is valid, ratios close to 1 are expected.

These are displayed in Fig. 8.

The ratio of de facto and predicted R2 values comprises a

large range from approximately 0.5 for data sets 19, 32 and 36

to almost 3.5 for data set 25.

The actual R2 being lower than the predicted one indicates

that in these cases the (mean) squared difference between

observed and calculated intensities is lower than the mean

weighted variance multiplied by �:

Io � Icð Þ
2

� �
<� �̂�2

� �
: ð23Þ

This might indicate that in these particular cases over-fitting

has occurred; however, among these sets only set No. 28 shows

a value S< 1. Multiplying R
pred
2 with the respective GoF values

does not yield fewer, but even more cases, where the actual R2

value is smaller than the predicted one. This is in contrast to

the case of the wR values, where the deviation of the GoF

from 1 was the missing piece of information that established

exact agreement between observed and predicted R values.

Explicit calculation of the ratio Io � Icð Þ
2

� �
=� �̂�2
� �

shows that

among the sets 12, 19, 24, 28, 32, 33 and 36 the largest ratio is

0.53 (for sets No. 12 and 28, see Table 3); the other ratios in

this set are all even smaller. For these sets the squared

difference between observed and calculated intensity values is

on average only half of the respective variance, or even less.

For other data sets the ratio is much larger than 1, for example

for data sets No. 6, 25 and 31 the mean squared difference

between observed and calculated intensities is about 7.3, 11.5

and 5.5 times larger than the mean squared (weighted)

variance that has been used to adjust the model parameters

and to derive the set of Ic!

How does this conform to the GoF values that are close to 1

for all sets?

The GoF is an independent measure of the fit quality only

under certain circumstances. One important assumption is that

the residuals are normally distributed, i.e. Gaussian, with zero

mean and unit variance. A normal distribution of residuals

indicates that the errors are independent and uncorrelated.

The other assumption is that the variances are known.

If they are not known, the sum of squared residuals

�2 ¼
P
ðIo � IcÞ=�ðIoÞ
 �2

can be used to guess or adjust the

variances. In this case a good fit is assumed. The moment this
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Figure 6
Effective reduction of the variance by employing a weighting scheme:
shown is the average value �2=�̂�2

� �
, with �̂�2 from equation (14) where the

average is taken over the respective data set. Additionally a line with the
value 0.75 is drawn.

Figure 7
De facto and predicted R values: the predicted R2 is shown in red and the
de facto one in green. For the prediction the reduced variance �̂�2 was
used.

Figure 8
Ratio R

de facto
2 =R

pred
2 ð�̂�

2Þ. For the numerical values of R
de facto
2 and R

pred
2 ð�̂�

2Þ

see the supplementary material. Additionally a line with value 1 is
depicted.



assumption enters the process, the GoF ceases to serve as an

independent measure of quality. To cite the numerical recipes:

‘Obviously, this approach prohibits an independent assess-

ment of goodness-of-fit, a fact occasionally missed by its

adherents’ (Press et al., 1992, p. 661). In other words, by

applying a weighting scheme to force the GoF value into the

neighbourhood of unity, the GoF value becomes meaningless.

The reason is that under the assumptions necessary for a

least-squares refinement, the residuals Io � Icð Þ=� are random

numbers from a Gaussian (� ¼ 0, �Gauss ¼ 1) distribution and

not correlated. The squared residuals Io � Icð Þ
2=�2 entering

the GoF are �2-distributed and are also not correlated. For

uncorrelated random numbers the distributions can be

rewritten

Io � Icð Þ
2

�2

� �
’

Io � Icð Þ
2

� �
�2h i

: ð24Þ

This is used e.g. for the prediction of R2 and leads, under the

assumptions made, to GoF ’ 1. The inverse is not true. From

GoF ’ 1 one cannot conclude that equation (24) is valid. To

illustrate this point in more detail, Table 3 shows that the

average squared unweighted residuals Io � Icð Þ
2

� �
can be much

larger or much smaller than the average reduced variance �̂�2
� �

(column 2), despite all of the refinements having a GoF close

to 1 (column 5). For a linear fit of unweighted squared resi-

duals against � times the reduced variances �̂�2 with a linear fit

parameter �,

Io � Icð Þ
2
¼ ���̂�2; ð25Þ

values between 0.03 (data set No. 36) and 26.5 (data set No. 6)

are obtained for � (column 3). The correlation coefficient cc

between ��̂�2 and Io � Icð Þ
2 is generally high with lowest values

for data sets No. 19 (cc ¼ 0:27), 22 (cc ¼ 0:21), 35 (cc ¼ 0:32)

and 36 (cc ¼ 0:20) (column 4). Fit parameters � ’ 1 and

correlation coefficients close to zero were expected for all data

sets in the case of random residuals.2 So both correlation

coefficients and values � 6¼ 1 may indicate that the residuals

Io � Icð Þ=�̂� are not Gaussian-distributed. A further hint is the

maximum value of Io � Icð Þ
2=���̂�2 after adjustment of �: for

those data sets with � ’ 1, Nos. 26, 27 and 35, these maximum

values are 50.73, 26.91 and 69.10 (data not shown). These

numbers indicate that the weighting scheme was not applied

merely in order to ‘correct’ the s.u.’s, for in this case of an

adequate model and s.u.’s in need of correction, a maximum

value not much larger than 25 was expected (a value of 25

corresponds to a 5� event, that happens in one out of

1:74� 106 cases). The residual distributions are shown in the

form of normal probability plots in the supplementary mate-

rial. All deviate in a systematic rather than random way from

the expected behaviour, the de facto frequencies of residuals

are all above or under the diagonal line, which represents the

expected residuals. None of the residual distributions is very

close to a normal distribution.

5. Conclusion

The theoretical R values give a realistic estimate of the

attainable R values without the need to explicitly construct a

model. The theoretical R values assume GoF = 1 and they

reproduce the de facto R values corresponding to the mini-

mized residuals in this case. The basic assumptions for the

application of theoretical R values are the same as those for an

application of a least-squares fit of model parameters to

experimental data, i.e. accuracy of the data, adequateness of

s.u.’s and the possibility of specifying an adequate model.

Accuracy of the data implies that measurement errors are

stochastic rather than systematic. The adequateness of the

s.u.’s leads to the correct model parameters and GoF = 1. This

assumption is less crucial if the s.u.’s are correct relative to

each other, but on a wrong scale, as it would not affect the

model parameter values but only their s.u.’s and the GoF. The

possibility of specifying an adequate model is important too.

Consider, for example, the case of a high-resolution data set

and an independent-atom model, or the case of a data set from

a modulated structure and a not-modulated structure model.

These assumptions lead to a normal distribution of residuals.

In the case of the s.u.’s being on a wrong scale, the distribution

is still of a Gaussian type, but no longer with unit variance. As

the requirements for the application of the theoretical R

values are quite general, they are applicable to any field where

model parameters are fitted to experimental data with known

precision, or with unit weights. The theoretical R values can

also be applied to other modelling processes that assume

Gaussian errors like applications of the maximum entropy

method. We expect the theoretical R values to be helpful as

experimental data-quality descriptors, as a tool for detection

of systematic errors in future applications and as a stopping

criterion in crystallographic maximum entropy applications.

They may also serve to quantify the costs, in terms of increased

R values, of changes applied to the standard uncertainties of

the experimental data, for example by applying a weighting

scheme. The next step of this research is to apply the theo-

retical R values to charge-density studies and to extend the

formalism to cases where a normal distribution of residuals

does not apply, such as in maximum likelihood refinements.
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